Improving Distantly-Supervised Neural Relation Extraction using Side Information

Shikhar Vashisht, Rishabh Joshi, Sai S. Prayaga, Chiranjib Bhattacharyya, and Partha Talukdar

Indian Institute of Science, Bangalore
Relation Extraction (RE)

- **Definition:** Task of identifying relation between entities in text.

- **Example:** Google was founded in the state of California in 1998.
 - *Founding-year* (Google, 1998)
 - *Founding-location* (Google, California)

- **Applications:** Question answering, Web search, KB Population...
Traditional RE

- **Hand-built** patterns and **Bootstrapping** method
 - Hearst patterns, Snowball (2000) …

- **Supervised** approaches:
 - **Relation detection**: True/False
 - **Relation classification**: employee-of/located-in/…

- **Disadvantages:**
 - Suffers from lack of annotated data
Distant Supervision (DS)

- Alleviates the problem of lack of annotated data.

- **Distant Supervision (DS) assumption**: [Mintz et al., 2009]
 “If two entities have a relationship in a KB, then all sentences mentioning the entities express the same relation”

![Diagram showing Trump as president of US, with sentences indicating his relationship with the US.]

- Trump, US president addressed the people.
- The first citizen of US, Donald Trump ...
- Trump was born in NY, US.
Multi-instance Multi-label (MIML)

- DS might lead to **Noisy labelled data**

- **MIML**: Relaxed DS assumption [Riedel et al. 2010; Surdeanu et al., 2012]
 - Does not transform DS to traditional supervised RE (sentence-level).
 - Allows **multiple relations** to hold between entities
 - If a relation holds between entities then **at least one sentence** must support it
Neural Networks for DS

- Earlier techniques utilized **hand-crafted NLP features** which can be expensive and limiting.

- Using **NN for feature extraction** helps.

- **PCNN (Piecewise Convolution NN)** [Zeng et al., 2014]
 - Adapts **CNNs** for extracting **sentence features**.

- **PCNN+Attention** [Lin et al., 2016]
 - Uses **attention mechanism** for **aggregating** information.
Motivation

- **KGs** contain **information** which can **improve RE**
 - Limiting supervision from KG to dataset creation

- **Dependency tree based features** have been found **relevant** for RE [Mintz et al. 2009]
 - Instead of defining **hand-crafted features** can employ **Graph Convolutional Networks (GCNs)**.
Graph Convolutional Networks (GCN)

- Generalization of CNNs over Graphs.

\[h_v = f \left(\sum_{u \in \mathcal{N}(v)} (W x_u + b) \right), \quad \forall v \in \mathcal{V} \]

[Kipf et al., 2016]
Contributions

- Propose RESIDE, a novel method which utilizes additional supervision from KB in a principled manner for improving distant supervised RE.

- RESIDE uses GCNs for modeling syntactic information and performs competitively even with limited side information.
RESIDE
RESIDE: Side Information

- **Entity Type Information:**
 - All relations are constrained by the entity types
 - $president_of(X, Y) \Rightarrow X = \text{Person} \ Y = \text{Country}$
 - Several KGs like Freebase, Wikidata provide entity type info.
 - Not suitable as hard constraints
 - Not available at right granularity or are noisy
 - Requires manual effort for each relation
RESIDE: Side Information

- **Relation Alias Information:**
 - Utilize relation aliases provided by KGs.
 - Extract relation phrases between target entities using OpenIE and dependency parse.
 - Link extracted phrases to closest relations using aliases from KG.
Experiments

- **Datasets:**
 - **RiedelNYT:** [Riedel et al., 2010]
 - Constructed by aligning Freebase relations with NYT corpus
 - Contains 53 relations
 - **GIDS (Google IISc Distant Supervision):** [Jat et al., 2018]
 - Constructed by extending Google RE corpus
 - Assures at-least-one assumption of MIML paradigm
Results:

Comparison of Precision Recall curves

RESIDE achieves higher precision over the entire recall range.
Ablation Study:

- **Comparison of different ablated version of RESIDE**
 - *Cumulatively removing* different side information
 - *Side information helps* improve performance.
Effect of Relation Alias Information

- **Performance on different settings:**
 - **None:** Relation aliases not available
 - **One:** Name of relations used as aliases
 - **One+PPDB:** Relation names extended using Paraphrase Database
 - **All:** Relation aliases from KG

RESIDE performs **comparable** with **limited side information.**
Conclusion

- Additional supervision from KG improves Relation Extraction
- Syntactic features can be efficiently utilized using Graph Convolutional Networks (GCNs)
- We propose RESIDE, a novel NN based model which utilizes the above two ideas for outperforming existing methods.
Questions?

Contact email: shikhar@iisc.ac.in

Source code and data are available github.com/malllabiisc/RESIDE
References:

